Et a linea, quae erit planities in linea gnomonis circino novem spatia demetiantur; et quo loco nonae partis signum fuerit, centrum constituatur, ubi erit littera a; et deducto circino ab eo centro ad lineam planitiae, ubi erit littera b, circinatio circuli describatur, quae dicitur meridiana.
von catarina.965 am 17.06.2013
Und von der Linie, welche die Ebene in der Linie des Gnomon bildet, sollen mit dem Zirkel neun Räume ausgemessen werden; und an der Stelle, wo das Zeichen des neunten Teils sein wird, soll ein Zentrum errichtet werden, wo der Buchstabe A sein wird; und mit dem vom diesem Zentrum zum Rand der Ebene gezogenen Zirkel, wo der Buchstabe B sein wird, soll die Zeichnung eines Kreises beschrieben werden, welcher Meridiana genannt wird.
von emilia.923 am 22.05.2019
Von der Horizontallinie an der Basis des Sonnenuhr-Zeigers aus, vermessen Sie neun gleiche Abstände mit einem Zirkel. Markieren Sie den neunten Punkt als Mittelpunkt A, und zeichnen Sie dann mit dem Zirkel einen Kreis von diesem Mittelpunkt bis zum Punkt B auf der Horizontallinie. Dieser Kreis wird Meridianzirkel genannt.